High Osmolarity Environments Activate the Mitochondrial Alternative Oxidase in Debaryomyces Hansenii
نویسندگان
چکیده
The oleaginous yeast Debaryomyces hansenii is a good model to understand molecular mechanisms involved in halotolerance because of its impressive ability to survive under a wide range of salt concentrations. Several cellular adaptations are implicated in this response, including the presence of a cyanide-insensitive ubiquinol oxidase (Aox). This protein, which is present in several taxonomical orders, has been related to different stress responses. However, little is known about its role in mitochondria during transitions from low to high saline environments. In this report, we analyze the effects of Aox in shifts from low to high salt concentrations in the culture media. At early stages of a salt insult, we observed that this protein prevents the overflow of electrons on the mitochondrial respiratory chain, thus, decreasing the production of reactive oxygen species. Interestingly, in the presence of high osmolite concentrations, Aox activity is able to sustain a stable membrane potential when coupled to complex I, despite a compromised cytochrome pathway. Taken together, our results suggest that under high osmolarity conditions Aox plays a critical role regulating mitochondrial physiology.
منابع مشابه
The Potential of the Yeast Debaryomyces hansenii H525 to Degrade Biogenic Amines in Food
Twenty-six yeasts from different genera were investigated for their ability to metabolize biogenic amines. About half of the yeast strains produced one or more different biogenic amines, but some strains of Debaryomyces hansenii and Yarrowia lipolytica were also able to degrade such compounds. The most effective strain D. hanseniii H525 metabolized a broad spectrum of biogenic amines by growing...
متن کاملDebaryomyces hansenii colonization and its protein profile in psoriasis
Background: Psoriasis is an immune mediated skin disorderwhich is mainly characterized by abnormal proliferation anddifferentiation of keratinocytes. It is believed that Debaryomyceshansenii (Candida famata) can colonize skin and mucous membranesof psoriatic patients and exacerbate psoriatic lesions via toxins,antigens, and proteins. The aims of this study were to evaluateDebaryomyces hansenii ...
متن کاملAntagonistic Activity of Fructoplane Yeast Against Ulocladium Rot of Papaya
Debaryomyces hanseniZopf isolated from the fructoplane of apples were found to be effective as biocontrol agent against rot of papaya caused by Ulocladium. chartarum(Pr.) Simm. The ability of D. hansenii to prevent infection of U. chartarum was lost when the antagonist cells were killed by autoclaving. Cell free culture filtrates of antagonist were unable to prevent disease incidence. Efficacy ...
متن کاملPhysiological uncoupling of mitochondrial oxidative phosphorylation. Studies in different yeast species.
Under non-phosphorylating conditions a high proton transmembrane gradient inhibits the rate of oxygen consumption mediated by the mitochondrial respiratory chain (state IV). Slow electron transit leads to production of reactive oxygen species (ROS) capable of participating in deleterious side reactions. In order to avoid overproducing ROS, mitochondria maintain a high rate of O(2) consumption b...
متن کاملPopulation polymorphism of nuclear mitochondrial DNA insertions reveals widespread diploidy associated with loss of heterozygosity in Debaryomyces hansenii.
Debaryomyces hansenii, a yeast that participates in the elaboration of foodstuff, displays important genetic diversity. Our recent phylogenetic classification of this species led to the subdivision of the species into three distinct clades. D. hansenii harbors the highest number of nuclear mitochondrial DNA (NUMT) insertions known so far for hemiascomycetous yeasts. Here we assessed the intrasp...
متن کامل